Phalaris cultivars

Monaro Farming Systems Winter Field Day
June 10 2016

Richard Culvenor

CSIRO Canberra
Outline

1. Introduction

2. Cultivar types

3. Two recent cultivars bred for persistence factors
 - Holdfast GT (Grazing tolerance)
 - Advanced AT (Acid soil tolerance)

4. Canberra genotype x management study
Phalaris aquatica in Australia

- Proven deep-rooted perennial grass for sheep and beef industries of southern Australia
- Sown on 2+ M ha Australia-wide (2011 survey)
 Domestic seed market ~400 t /yr
- Good autumn-winter-spring production, partially dormant in summer
- Excellent drought survival
- Role in sustainability
- Few pests and diseases
- Occasionally toxic to livestock
Dormant buds for summer survival
CSIRO phalaris program breeding history

Advances: seedling vigour, autumn-winter yield, lower alkaloids, harvestable seed & seed quality, reduced establishment costs, adaptation to dry areas, adaptation to skeletal and acidic soils.
Grouping phalaris cultivars

Winter activity

Seed retention

Summer dormancy

Al, acid soil tolerance
Phalaris cultivars in Australia

<table>
<thead>
<tr>
<th></th>
<th>Semi-winter dormant</th>
<th>Winter-active type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Older cultivars</td>
<td>Australian type</td>
<td>General purpose</td>
</tr>
<tr>
<td>(pre-2005)</td>
<td>Australian Uneta*</td>
<td>Sirosa Holdfast*</td>
</tr>
<tr>
<td></td>
<td>Australian II*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grazier*, etc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maru</td>
<td></td>
</tr>
<tr>
<td>Since 2005</td>
<td>Fosterville</td>
<td>Holdfast GT*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lawson*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stockman?</td>
</tr>
</tbody>
</table>

* Seed-retaining cultivar
Semi-winter dormant cultivar: Australian, Uneta, Australian II, Fosterville, ...

- Reputation for high persistence
- Tolerant of heavy continuous grazing
- Smaller seedlings, less productive in autumn/winter than winter-active cultivars
- More spreading
- Higher content of tryptamine alkaloids
General purpose winter-active cultivar:
Sirosa, Holdfast, Holdfast GT, Lawson

Best used in well-fertilized, highly productive pastures

Best managed rotationally/strategic rests for optimum productivity and persistence

BUT

Holdfast GT much more tolerant of high continuous grazing pressure
Winter-active cultivars for marginal and acidic soils:
Landmaster, Advanced AT

Landmaster
Bred for shallow, fairly acidic and infertile soils on mid and upper slopes where recharge occurring

Advanced AT
Most Al-tolerant phalaris cultivar for strongly acid soils

Best managed rotationally/strategic rests for optimum productivity and persistence
Winter yield comparison

Swards in September of Year 2
(Mean of sites at Tamworth, Yass, Hamilton)

Herbage DM (kg/ha)
Yield comparison 1991-94
Balmoral, Western Victoria (615 mm)

Source: Anderson et al. 1999

Persistence Index:
- Australian
- Sirosa
- Porto
- Currie
- Demeter
- Triumph
- Melik sel.
- Ellett
- KV
- Brumby

Yield (DM t/ha)

- Perennial ryegrass
- Tall fescue
- Cocksfoot
- Phalaris

Winter-active phalaris

Source: Anderson et al. 1999
Higher spreading ability of Australian
Canberra grazing trial 1990-98

Mean rotationally and set stocked
Rotationally stocked

Basal area (%)

Year

Australian
Holdfast
Sirosa
Perla Ret.
AUSTRALIAN 1420 kg/ha phal, 1850 kg/ha total DM

ADVANCED AT
1960 kg/ha phalaris, 2280 kg/ha total DM
Background to persistence issues

1. **Pressure to intensify management**
 - profitable
 - internationally competitive
 - efficient use of land & pasture resources

2. **Fertiliser, increased stocking rates**
 - **Pressure on persistence of perennial grasses**

3. **Concern for >25 years over persistence of perennials**
 - MLA Key programs
 - Feedbase Investment Plan

Derived from ABARE data (Source: Mullen, 2007)
Stresses affecting persistence

Advanced AT

Factors that influence pasture plant persistence

- Drought
- Frost
- Temperature
- Rainfall distribution (e.g., winter vs summer rainfall)
- pH (acid v. alkaline, Al-, Mn-toxicity)
- Salinity
- Texture
- Fertility
- Grazing pressure (stocking rate / insect attack)
- Plant grazing tolerance (e.g., cocksfoot – pulled out cv. Australian phalaris vs winter-active)
- Rest periods (e.g., continuous vs rotational grazing)
- Palatability (e.g., good = overgrazed poor = undergrazed)
- Fungal, bacterial and viral diseases, pests (root & shoot diseases, insects, grubs, nematodes)
- Interspecies, plant competition

climate x soil x grazing x disease x competition

single stress
double stress
multiple stress
Holdfast GT

A winter-active cultivar with improved persistence under grazing
Winter Activity vs. Persistence under grazing pressure

Winter yield
In Year 2
Mean of 3 sites
(kg/ha)

Winter-active cultivars

Sirolan
Sirosa
AT98
Holdfast
Landmaster
Atlas PG

Holdfast GT

Parental families

Expected position

LSD (5%)

Basal frequency in year 5; %
(Mean of W Vic & S. Tablelands sites)
Improved acid soil tolerance – Advanced AT
Soil acidity and phalaris

Soil pH\textsubscript{Ca} < 4.5 common
Progress in breeding for Al tolerance

- **Sirosa** *(1974)*
- **Holdfast** *(1990)*
- **Landmaster** *(1996)*

- **AT98** *(source of the new AT cultivar)*

Tolerance of 100 μM Al in nutrient solution

Phalaris aquatica × arundinacea × aquatica
Establishment
Seedling growth, Rye Park

Soil
0-10: pH_{Ca} 3.9, Exch. Al 26%
10-30cm: pH_{Ca} 4.0, Exch. Al 35%
Benefit of Al tolerance at establishment

- Persistence in Year 2 at Chiltern (%)
- Root DM in nutrient solution (g x 10^-4)

Correlation: $r=0.97$ (P<0.01)

Species:
- Australian II
- Sirosa
- Holdfast
- Landmaster
- AT98

Location:
- Chiltern
- Yass
- Sutton
- Beechworth

Note: The image includes photographs of the selected locations and species.
Acid soil tolerance x moisture interaction

Dick’s Ck (2nd year basal frequency)

Soil 0-40 cm: pH_{Ca} 4.1, Exch. Al 43%

Sown Aug 2004
Winter-spring 292 mm

Sown Aug 2005
Winter-spring 498 mm
Effect of drought
Aug. 2006-sown trials in 2007 (mean of 4 sites)

<table>
<thead>
<tr>
<th>Site</th>
<th>pH Ca</th>
<th>Exch. Al %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0-4.3</td>
<td>21-52</td>
</tr>
<tr>
<td>2</td>
<td>4.1-4.1</td>
<td>17-46</td>
</tr>
<tr>
<td>3</td>
<td>4.0-4.1</td>
<td>38-58</td>
</tr>
<tr>
<td>4</td>
<td>4.2-4.6</td>
<td>12-22</td>
</tr>
</tbody>
</table>

Frequency in autumn of 2nd year

- Advanced AT
- Landmaster
- Sirosa
- Holdfast
- Australian II
- Kasbah cocksfoot
- Fraydo tall fescue
- KV-type ryegrass

LSD (5%)
Advanced AT trials: conclusions

Higher Al tolerance in Advanced AT of most benefit in assuring establishment in acid soils in response to moisture availability

Landmaster has useful Al tolerance but Advanced AT superior

- when establishing under drought
- in soils with layers of pH<4.2 and 30-50% exch. Al in the top 50 cm

Parallel effects on longer-term persistence generally smaller than at establishment

*Note: Advanced AT is very erect and should be rotationally grazed for good persistence
Role of genetics and management:
Canberra 2009-2013
Structure of experiment

Genotype:

- 16 phalaris genotypes
 - differing in growth habit, growth pattern, stress tolerance

Environment:

- soil fertility & drought
 - low P / high P

Management:

- grazing management
 - rotational vs. continuous at high and low P
- grazing pressure
 - 13.5 vs 18 dse/ha at high P
Long-term $P \times$ stocking rate experiment
Dr Richard Simpson

Timeline:

Pre-treatment phase
- 2007: sown May (+100 kg/ha single super on low P plots)
- 2008: grazed intermittently, fertility treatments maintained

Experimental phase
- 2009: mid-June grazing treatments commenced
- 2013: early June grazing treatments ended

Recovery phase (grazing exclusion)
- Jun-Aug 2013 assess winter production
- Sep-Oct 2013 assess spring production
Management treatments

High P Olsen 22
- Continuous stocking
 - 18 sheep/ha (4 per 0.222 ha)
 - 14.8 m
- Rotational stocking
 - 18 sheep/ha (4 per 0.222 ha)
 - 7.4 m

Low P (no super) Olsen 4
- Continuous stocking
 - 13.5 sheep/ha (3 per 0.222 ha)
 - 14.8 m
- Continuous stocking
 - 9 sheep/ha (6 per 0.666 ha)
 - 7.4 m
- Rotational stocking
 - 9 sheep/ha (3 per 0.333 ha)
Soil pHCa 0-20cm 4.2-4.6
Total herbage DM

- HPRS
- HPCS
- LPRS
- LPCS
- HPCS13.5

Days:
- Jul09
- Jan10
- Jul10
- Jan11
- Jul11
- Jan12
- Jul12
- Jan13
Total herbage DM – High P

- HPRS
- HPCS
- HPCS13.5

Days
Jul09 Jan10 Jul10 Jan11 Jul11 Jan12 Jul12 Jan13

Total herbage DM (kg/ha)
Botanical composition

- **High P Rotational 18/ha**
- **Low P Rotational 9/ha**
- **High P Continuous 13.5/ha**
- **High P Continuous 18/ha**

- Composition (%)

- Days

- Days

- Composition (%)

- Composition (%)

Legend:
- Black: Broadleaf weeds
- Gray: Clover
- Light gray: Other grass
- White: Phalaris

Month: July, January
Grazing management effects
(average all phalaris lines)

Culvenor and Simpson (2015) Grass and Forage Science
High P, 18 sheep/ha, continuous stocking

- Holdfast GT
- Advanced AT
- Sirosa
- Holdfast
- Landmaster
- Australian

Basal frequency (%)

LSD between cvv
LSD2 within cvv

Frequency (%)

2009 2010 2011 2012 2013 2014
0 10 20 30 40 50 60 70 80 90 100

Graph showing changes in basal frequency (%) over years for different species.
High P, 18 sheep/ha, rotational stocking

![Graph showing basal frequency (%)](image)

- Holdfast GT
- Advanced AT
- Sirosa
- Holdfast
- Landmaster
- Australian

- LSD between cvv
- LSD2 within cvv
High P, 13.5 sheep/ha, continuous stocking

[Graph showing basal frequency (%)]

- Holdfast GT
- Advanced AT
- Sirosa
- Holdfast
- Landmaster
- Australian

LSD between cvv
LSD2 within cvv

2009 2010 2011 2012 2013

0
10
20
30
40
50
60
70
80
90
100
Low P, 9 sheep/ha, continuous stocking
Low P, 9 sheep/ha, rotational stocking

![Graph showing basal frequency (%)](image_url)

- Holdfast GT
- Advanced AT
- Sirosa
- Holdfast
- Landmaster
- Australian

Legend:
- **LSD between cvv**
- **LSD2 within cvv**
Recovery period (exclusion from grazing)

Aim: To observe the growth potential of surviving phalaris after 4 years of treatment
- combines survival and vigour

Winter: 7 June to 28 August

Spring: 2 September to 30 October
Recovery period – winter

General views

High P
Rotational
18/ha

Low P
Rotational
9/ha

High P
Continuous
13.5/ha

Low P
Continuous
9/ha
Recovery: High P, 18 sheep/ha, continuous stocking
Recovery period

Fertility treatment effects

Winter + Spring

<table>
<thead>
<tr>
<th>Treatment</th>
<th>DM kg/ha</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Phalaris</td>
<td>Total</td>
</tr>
<tr>
<td>High P</td>
<td>2740</td>
<td>5040</td>
<td></td>
</tr>
<tr>
<td>Low P</td>
<td>750</td>
<td>2700</td>
<td></td>
</tr>
<tr>
<td>lsd (P=0.05)</td>
<td>188</td>
<td>121</td>
<td></td>
</tr>
</tbody>
</table>
Recovery: High P, 18 sheep/ha, continuous stocking

Winter

Less persistent than GT

Lower vigour cf. GT

Spring

Total DM (kg/ha)
Recovery: High P, 13.5 sheep/ha, continuous stocking
Recovery: High P, 18 sheep/ha, rotational stocking
Summary

• Phalaris was more resilient after drought/overgrazing and much more productive at high than at low soil fertility

• Rotational stocking enhanced persistence during a period of drought and low herbage mass

• Reducing stocking rate under continuous stocking also protected phalaris persistence

• Holdfast GT was more tolerant of close continuous stocking than other winter-active cultivars

• The other winter-active cultivars clearly benefitted from rotational stocking at high grazing pressure

• Australian was best able to cope with grazing pressure under low soil fertility
Conclusions

• Perennial grass persistence is protected by Managing grazing.

 OPTIONS: lower stocking rate (*high cost*)
 or rotational stocking (*less convenience*)

• Genotypes that can resist Environmental and/or grazing stresses further protect perennial grass density when management options are limited.

 e.g. *in droughts when multiple stresses occur*

• Long term persistence and continuing productivity is ensured by combining G and M
Thank you